
PHYSICAL REVIEW E, VOLUME 65, 016123
Fractional Fokker-Planck equation and oscillatory behavior of cumulant moments
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The Fokker-Planck equation is considered, which is connected to the birth and death process with immigra-
tion by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck
equation in order to investigate an origin of oscillatory behavior of cumulant moments. From its solution~the
probability density function!, the generating function~GF! for the corresponding probability distribution is
derived. We consider the case when the GF reduces to that of the negative binomial distribution~NBD!, if the
fractional derivative is replaced to the ordinary one. TheH j moment derived from the GF of the NBD
decreases monotonically as the rankj increases. However, theH j moment derived in our approach oscillates,
which is contrasted with the case of the NBD. CalculatedH j moments are compared with those of charged

multiplicities observed inpp̄, e1e2, and e1p collisions. A phenomenological meaning of introducing the
fractional derivative in time variable is discussed.
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I. INTRODUCTION

The negative binomial distribution is often used for t
analysis of observed multiplicity distributions in high ener
hadron-hadron (hh) ande1e2 collisions. The cumulant mo
ment ~or the H j moment defined by the cumulant mome
normalized by the factorial moment! derived from the gen-
erating function of the negative binomial distribution~NBD!
does not show oscillatory behaviors as the rank of the cu
lant moment~or H j moment! increases. On the other han
H j moments obtained from observed multiplicity distrib
tions in hh ande1e2 collisions show oscillatory behavior
@1,2#. Those behaviors can be explained if multiplicity dist
butions truncated at the highest observed multiplicities
used for the calculation ofH j moments. Inhh collisions,
calculated results from the NBD and those from the modifi
NBD both fit the data well@3,4#. In e1e2 collisions, calcu-
latedH j moments by the use of the modified NBD~MNBD!
describe the oscillatory behavior of the data well. Howev
those by the NBD oscillate much weaker than the data,
cannot explain the behavior of the data@5#.

The NBD and the MNBD are derived from the branchi
equations; the former is from a birth and death process w
immigration, and the latter is from a pure birth~or birth and
death process!. In those branching equations, it is assum
that particles are produced instantaneously, in other wo
without memory.

In high energy particle-particle collision processes, it
considered that a proper time is needed for a secondary
duced particle to behave as an independent particle from
parent particle after the collision of the parent with a tar
particle@6#. In high energy hadron-nucleus or lepton-nucle
collisions, this effect should be observed as a suppressio
multiplicity compared with the case of instantaneous co
sion, because the incident particle can collide with anot
target particle in the same nucleus within the proper ti
after the first collision. This proper time is called the form
tion zone@7#, which means some memory effect should
1063-651X/2001/65~1!/016123~8!/$20.00 65 0161
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existent in the high energy particle production processes
In the branching equations, particles are assumed to

produced successively. If a memory effect is introduced i
the branching process, it will be very interesting what resu
come out.

The birth and death process with immigration is describ
by the following equation:

]P~n,t !

]t
5l0@P~n21,t !2P~n,t !#1l2@~n21!P~n21,t !

2nP~n,t !#1l1@~n11!P~n11,t !2nP~n,t !#,

~1!

whereP(n,t) denotes the probability distribution thatn par-
ticles are existent at timet, l0 denotes an immigration rate
l1 a death rate, andl2 a birth rate. If the initial condition is
taken as

P~n,t50!5dn,0 ,

the solution of Eq.~1! becomes the NBD.
The probability density function, Koba-Nielsen-Olese

~KNO! scaling functionc(z,t) is connected to the probabil
ity distribution ~multiplicity distribution! P(n,t) by the Pois-
son transform,

P~n,t !5
^n0&

n

n! E
0

`

znexp@2^n0&z#c~z,t !dz. ~2!

The KNO scaling functionc(z,t) is obtained from the mul-
tiplicity distribution P(n,t) by the inverse Poisson trans
form,
©2001 The American Physical Society23-1
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c~z,t !5
^n0&
2pa

exp@^n0&z#E
2`

`

(
n50

` S ix

a D n

P~n,t !

3expF2 ix
^n0&

a
zGdx. ~3!

Applying the inverse Poisson transform~3! to Eq. ~1!, we
obtain the Fokker-Planck equation,

]c~z,t !

]t
52

]

]z Fa~z!2
1

2

]

]z
b~z!Gc~z,t !, ~4!

where

a~z!5b2gz, b~z!5s2z,

b5
l0

^n0&
, g5l12l2 , s25

2l2

^n0&
. ~5!

In Eq. ~5!, b.0, s2.0, andg is real. If time derivative in
Eq. ~4! is replaced to the fractional one, we have reached
the fractional Fokker-Planck equation in time variable a
model for high energy particle production processes,
which a memory effect is taken into account.

The fractional calculus has been investigated for hundr
of years@8,9#. Recently, the fractional Fokker-Planck equ
tion in time variable was derived from the continuous tim
random walk@10#. It is applied to the analysis of anomalou
diffusion phenomena@11#. The fractional derivative in spac
variable is introduced into the Fokker-Planck equation to
scribe the Le´vy process@12#.

We would take the fractional Fokker-Planck equation
time variable corresponding to the branching equation~1! as
a model for particle production processes, and to investig
it’s solution, which reduces to theg distribution when the
fractional derivative is replaced to the ordinary one. We a
examine the effect of fractional derivative or introducing t
memory effect on the behavior of cumulant moments.

II. A MODEL FOR PARTICLE PRODUCTION PROCESSES

The fractional Fokker-Planck equation~FFPE!,

]c~z,t !

]t
5 0D t

12aLFPc~z,t !, 0,a,1,

LFP52
]

]z Fa~z!2
1

2

]

]z
b~z!G , ~6!

with the initial condition,

c~z,t50!5d~z2z0!, z0.0, ~7!

is taken as a model for particle production processes. In
~6!, 0D t

d denotes the Riemann-Liouville fractional derivativ
@8,9#. The derivation ofc(z,t) from Eq. ~6! is shown in
Appendix A.

In the limit of z0→10, the solution of Eq.~6! for g.0
reduces to
01612
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c~z,t !5
1

G~l!

zl21

kl
expF2

z

kG (
m50

`

Lm
(l21)S z

kDEa~2mgta!,

~8!

whereEa(2t) denotes the Mittag-Leffler function. Ifa51,
Eq. ~8! coincides with theg distribution, the KNO scaling
function of the NBD.

The generating function~GF! for the multiplicity distribu-
tion corresponding to the KNO scaling function, Eq.~8!, is
derived in Appendix B, where thej th rank normalized fac-
torial moment and a formula for theH j moment are obtained
from the GF. The normalized factorial moment is given b

F j5
f j

^n& j
5

G~l1 j !

G~l!l j

(
m50

j

~21!m
jCmEa~2mgta!

@12Ea~2gta!# j
. ~9!

The recurrence equation for theH j moment is written as

H151, H j512 (
m51

j 21

j 21Cm21

F j 2mFm

F j
Hm . ~10!

The normalized factorial moment and theH j moment for
the NBD are given respectively as,

FNB, j5
G~l1 j !

G~l!l j
, ~11!

HNB, j5
G~l11!~ j 21!!

G~l1 j !
. ~12!

As can be seen from Eqs.~9! and ~11!, difference between
the normalized factorial moment derived from the FFPE
,a,1) and that of the NBD (a51) is given by Mittag-
Leffler functions.

We can see from Eq.~A15! in Appendix A that

lim
t→1`

Ea~2gta!50.

Then,F j moment given by Eq.~9! coincides withFNB, j in
Eq. ~11! in the limit of t→1`. Therefore,H j moment cal-
culated from Eq.~9! also coincides withHNB, j in the same
time limit.

III. CALCULATED RESULTS

At first, calculated results of the Mittag-Leffler functio
Ea(2t) is shown in Fig. 1. It is a decreasing function
variablet, and asa increases from 0 to 1, it decreases mo
faster as a function of variablet.

In the following calculations, observed values of^n& and
C2(5^n2&/^n&2) for the charged particles are used. Then
a and gta are given,l in Eq. ~9! is determined by the
following equation:

1

l
5S C22

1

^n& D @12Ea~2gta!#2

122Ea~2gta!1Ea~22gta!
21.
3-2
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In order to see the effect of the fractional derivative, i.
0,a,1, to the oscillatory behavior ofH j moments, calcu-
latedH j moments are shown in Fig. 2~a! with a50.25, and
gta51.5, 2.0, and 2.5, in Fig. 2~b! with a50.50, andgta

51.0, 1.5, and 2.0, and in Fig. 2~c! with a50.75, andgta

50.5, 1.0, and 1.5. In our calculation,^n&529.2 andC2

51.274, observed values inpp̄ collisions atAs5546 GeV,
are used@14#. If a is fixed, oscillation of theH j moment as
a function of rankj becomes weaker as the value of para
etergta increases. Ifgta is fixed, oscillation ofH j moments
become much weaker asa increases from 0 to 1.

In Fig. 3, our calculation witha50.5 andgta52.23 is
compared with theH j moment obtained from the data inpp̄
collisions atAs5546 GeV@14#. Parametergta is adjusted
with a step of 0.01 so that the first relative minimum of t
calculatedH j moment should be located near the rank of t
obtained from the data as much as possible. The calcul
first relative minimum value isH7523.3231025, and the
absolute value of it is much smaller than that obtained fr
the data. However, we can see from Figs. 2~b! and 3, the
calculatedH j moment witha50.5 andgta51.0 oscillates
as strong as that from the data.

In Fig. 4, the calculatedH j moment with a50.5 and
gta590.0 is compared with that obtained from the data
e1e2 collisions atAs591 GeV @15#. As can be seen from
the figure, the calculated value of the first relative minimu
is almost the same with the data, and the strength of
oscillation of calculatedH j moment is comparable with th
data.

The H j moment ine1p collisions in the pseudorapidity
range1 1,h,5 in the interval 185,W,220 GeV @16# is

1Pseudorapidityh is defined ash52 ln tan(u/2), with the polar
angle of a particle.

FIG. 1. The Mittag-Leffler function calculated from Eq.~A15!
with a50.25, 0.50, 0.75, and 1.00.
01612
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FIG. 2. Calculated results ofH j moments as a function of ran
j; ~a! with a50.25, andgta51.5 (l548.44), 2.5~16.93!, and 3.5
~11.61!; ~b! with a50.50, andgta51.0 (l566.82), 1.5~15.41!,
and 2.0~10.24!; ~c! with a50.75, andgta50.5 (l520.41), 1.0
~10.20!, and 1.5 ~7.65!. In each calculation,̂ n&529.2 andC2

51.274, observed values of charged particles inpp̄ collisions at
As5546 GeV/c @14# are used.
3-3
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also analyzed, and the results are shown in Fig. 5. Calcul
H j moment witha50.5 andgta511.2 (l520.00) well re-
produces the first relative minimum of the data. For comp
son, theH j moment calculated with the NBD, Eq.~B11!
truncated at the highest observed charged multiplicity is a
shown. The parameters of the truncated NBD are determ
by the minimumx2 fit with the observed charged multiplic
ity distribution. The first relative minimum of the calculate
H j moment with the truncated NBD isH5523.4231023

that is different from the first relative minimum
H3524.0731023 obtained from the experimental dat
However, the strength of the oscillation ofH j moments cal-

FIG. 3. Calculated result witha50.5 and gta52.23 (l

59.16) is compared with the data of charged particles inpp̄ colli-
sions atAs5546 GeV/c @14#, where^n&529.2 andC251.274 are
used. Parametera is fixed at 0.5, andgta is adjusted so that the firs
relative minimum of the calculatedH j moment is located atj >5
( j 57).

FIG. 4. CalculatedH j moments witha50.50 andgta590.0
(l525.36), as a function of rankj are compared with those in
e1e2 collisions at As591 GeV/c @15#. ^n&520.70 and C2

511.091 are used in our calculation.
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culated with the truncated NBD is comparable with the da
Estimation ofH j moment is obtained by the use of E

~10! from theF j moment both in the theoretical calculatio
and in the calculation from the experimental data. In orde
see the relation between the behavior of theH j moment and
that of the normalized factorial momentF j as a function of
rank j, we also analyze theF j moment ine1p collisions in
the pseudorapidity range 1,h,5 in the interval 185,W
,220 GeV@16#. The parameters are the same with those
Fig. 5. TheF j moment calculated with Eq.~9! is compared
with the data in Fig. 6~a!. Our calculated result in the nor
malized factorial moment well reproduces the experimen
data up to the fourth rank. The difference between them
less than 1%. However, we cannot reproduce the fourth r
H j moment of the data from our calculation. This result i
dicates that the oscillation of theH j moment is very sensitive
to the value ofF j moments.

To see the effect of truncation for the normalized factor
momentF j , those calculated with Eq.~11! ~without trunca-
tion! and with the truncated NBD are shown in Fig. 6~b!. The
former is calculated witĥn&58.80 andC251.190. Param-
eters of the truncated NBD are the same with those in Fig
The F j moment with truncation is much more suppress
than that without truncation at higher rankj.

From Figs. 6~a! and 6~b!, we can see that theF j moment
calculated from the FFPE is smaller than that with Eq.~11!
~without truncation!. Therefore, introduction of the fractiona
derivative in time variable suppresses the value ofF j mo-
ment compared with that of Eq.~11! as the rankj increases,
and gives rise to similar effect as in truncation of multiplici
distribution.

FIG. 5. CalculatedH j moments as a function of rankj are com-
pared with the data ine1p collisions in the pseudorapidity rang
1,h,5 in the interval 185,W,220 GeV @16#. White circles
denote the calculated result witha50.50 andgta511.2, where
^n&58.80 andC251.190 are used. White triangles show theH j

moment calculated with the NBD that is truncated atn521, the
highest observed charged multiplicity, where^nb&58.825 andl
513.21 are used.
3-4
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FRACTIONAL FOKKER-PLANCK EQUATION AND . . . PHYSICAL REVIEW E65 016123
The H j moments and normalized factorial moments
e1p collisions in 1,h,5 in the interval 185,W
,220 GeV@16# are also calculated with sets of paramete
a50.25 andgta516.0 (l519.94), or a50.75 andgta

55.70 (l520.41). The results become almost the same w
those shown in Figs. 5 and 6.

Observed charged multiplicity distributions in the pseud
rapidity windows, 1,h,hm, hm52, 3, 4, and 5, are also
given in e1p collisions in the interval 185,W,220 GeV
@16#. We also analyze the factorial moment of multiplicitie
in each pseudorapidity window using the formulas given
Eq. ~B6! or Eq.~9! with a50.5. Formula of average charge
multiplicity

^n&5lk^n0&@12Ea~2gta!#, ~13!

FIG. 6. Calculated normalized factorial momentsF j as a func-
tion of rank j are compared with the data ine1p collisions in 1
,h,5 in the interval 185,W,220 GeV@16#. ~a! White circles
denote the calculated result witha50.50 and gta511.2 (l
520.00), and black circles are the data.~b! White circles denote the
result calculated with the NBD that is truncated atn521, where
^nb&58.825 andl513.21 are used. Crosses show calculatedH j

moment with Eq.~11!, wherel513.10 is used.
01612
,
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is applied to that of the window, 1,h,hm, which is speci-
fied byDh5hm21. Estimated value ofgta andlk^n0& are
shown in Fig. 7. Roughly speaking,gta increases exponen
tially with Dh,

gta;exp@0.83Dh#,

andlk^n0& increases withDh more slowly.

IV. CONCLUDING REMARKS

The FFPE corresponding to the birth and death proc
with immigration is taken as a model for particle producti
processes with a memory effect. It is solved according to
procedure proposed by Barkai and Silbey@11#. From the so-
lution of the FFPE, we obtain the generating function for t
multiplicity distribution, where parametera connected with
the fractional time derivative is contained. Ifa is put to 1,
the distribution becomes the NBD.

The normalized factorial momentF j calculated with Eq.
~9! becomes much smaller than that with Eq.~11! obtained
from the GF for the NBD as the rankj increases, where Eq
~9! coincides with Eq.~11! if a51. This fact means that the
high multiplicity component in the multiplicity distribution is
suppressed ifa,1, compared with the NBD (a51) with
the samê n& andC2.

Whena is less than 1, the oscillation ofH j moment ap-
pears, and asa decreases from 1 to 0, the oscillation b
comes much stronger. This is caused by the fact that
fractional derivative (0,a,1) is introduced into the time
derivative in Eq.~6!. It can be said that introducing the frac
tional derivative gives similar effect on the normalized fa
torial moment and theH j moment as in the truncation o
multiplicity distributions.

If a is fixed, as can be seen from Fig. 1, the oscillation

FIG. 7. Pseudorapidity windowDh dependence ofgta (a
50.50) and kl^n0& in e1p collisions in the interval 185,W
,220 GeV @16#. Those values are estimated from the observ
average charged multiplicitŷn& in the pseudorapidity windowDh
(Dh5hm21,hm52,3,4,5) @16# by the use of Eq.~13!.
3-5
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H j moments become weaker asgta increases. The first rela
tive minimums ofH j moments obtained from the data a
about26.731023 in pp̄ collisions,24.131023 in ep col-
lisions, and24.131024 in e1e2 collisions. We have ana
lyzed the data witha50.5. Estimated values ofgta from the
data are 2.23~or 1.0!, 11.2, and 90.0, respectively. The res
of our analysis is consistent with the general features ofH j
moments shown in Fig. 1.
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APPENDIX A: FRACTIONAL FOKKER-PLANCK
EQUATION

We consider the FFPE,

]c~z,t !

]t
5 0D t

12aLFPc~z,t !, 0,a,1,

LFP52
]

]z Fa~z!2
1

2

]

]z
b~z!G , ~A1!

with the initial condition

c~z,t50!5d~z2z0!, z0.0. ~A2!

In Eq. ~A1!, coefficientsa(z) andb(z) are given by Eq.~4!.

0D t
d denotes the Riemann-Liouville fractional derivativ

@8,9# defined by

0D t
d f ~ t !5

1

G~n2d!

dn

dtn
E

0

t

~ t2t!n2d21f ~t!dt,

n21<d,n, ~A3!

wheren is a positive integer. Ifa51, Eq. ~A1! reduces to
Eq. ~4!.

According to the method proposed by Barkai and Silb
@11#, we assume that

c~z,t !5E
0

`

Rs~ t !Gs~z!ds, ~A4!

and that functionGs(z) satisfies the following equations:

LFPGs~z!5
]

]s
Gs~z!,

G0~z!5d~z2z0!. ~A5!

Then functionGs(z) is given as
01612
y

Gs~z!5
1

kp
expF2

z1z0~12p!

kp G S z

z0~12p! D
(l21)/2

3I l21F2Azz0~12p!

kp G , ~A6!

wherel.0, andk andp are real; those are written respe
tively as,

l5
2b

s2
, k5

s2

2g
, p512e2gs. ~A7!

Coefficientl is positive. In the following, we assume tha
g5l12l2.0. Therefore, coefficientk becomes positive.
Equation~A6! can be expanded as

Gs~z!5
1

k S z

kD l21

expF2
z

kG (
m50

`
m!

G~m1l!

3Lm
(l21)S z

kDLm
(l21)S z0

k Dexp@2mgs#, ~A8!

whereLm
(l21)(z) denotes the Laguerre polynomial.

Applying the Laplace transform to Eq.~A1!, we find

E
0

`FuR̃s~u!1u12a
]R̃s~u!

]s
GGs~z!ds

5@12u12aR̃0~u!#d~z2z0!, ~A9!

whereR̃s(u) is the Laplace transform ofRs(t),

R̃s~u!5E
0

`

Rs~ t !e2utdt. ~A10!

Furthermore, we assume that each side of Eq.~A9! is
equal to zero

u12aR̃0~u!51, 2u12a
]R̃s~u!

]s
5uR̃s~u!. ~A11!

The solution of Eq.~A11! is given by

R̃s~u!5ua21exp@2sua#. ~A12!

ThenRs(t), the inverse Laplace transform ofR̃s(u), is writ-
ten as

Rs~ t !5
1

2p i Ec02 i`

c01 i`

R̃s~u!eutdu5
t2a

2p i Ec02 i`

c01 i`

sa21

3expFs2
s

ta
saGds ~c0.0!. ~A13!

Therefore, the solution of the FFPE~A1! is given by
3-6
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c~z,t !5E
0

`

Rs~ t !Gs~z!ds5
zl21

kl
expF2

z

kG (
m50

`
m!

G~m1l!

3Lm
(l21)S z

kDLm
(l21)S z0

k DEa~2mgta!, ~A14!

whereEa(2t) for t.0 denotes the Mittag-Leffler function
of ordereda @13#,

Ea~2t !5
sin~ap!

ap E
0

`

exp@2~xt!1/a#

3
1

x212x cos~ap!11
dx. ~A15!

It is written in the infinite series as

Ea~z!5 (
n50

`
zn

G~an11!
. ~A16!

In the limit of z0→10, Eq. ~A14! reduces to

c~z,t !5
1

G~l!

zl21

kl
expF2

z

kG (
m50

`

Lm
(l21)S z

kDEa~2mgta!.

~A17!

If a51, Eq. ~A17! coincides with theg distribution, the
KNO scaling function of the NBD.

We have considered the FFPE forg5l12l2.0, where
the birth ratel2 is less than the immigration ratel1. In the
case forg,0, the solution of the FFPE~A1! in the limit of
z0→10, is given by

c~z,t !5
1

G~l!

zl21

ukul
(

m50

`

Lm
(l21)S z

uku DEa@2~m1l!uguta#.

If a51, the above equation coincides with theg distribu-
tion. However, we cannot calculate the factorial mom
from it, because the exponential damping factor inz variable
is not contained in the equation, contrary to Eq.~A17!.

APPENDIX B: GENERATING FUNCTION
AND FACTORIAL MOMENT

The GF for the multiplicity distributionP(n,t) is defined
as

P~u!5 (
n50

`

P~n,t !un. ~B1!

The multiplicity distribution and thej th rank factorial mo-
ment are given from Eq.~B1!, respectively, as

P~n,t !5
1

n!

]nP~u!

]un U
u50

,

01612
t

f j5^n~n21!•••~n2 j 11!&

5
] jP~u!

]uj U
u51

5(
n5 j

`

n~n21!•••~n2 j 11!P~n!. ~B2!

From Eqs.~2! and ~B1!, the GF is written by the use of th
Laplace transform of the KNO scaling functionc(z,t) as

P~12u/^n0&!5E
0

`

c~z,t !e2uzdz. ~B3!

Then the GF corresponding to Eq.~A17! is given as

P~u!5 (
m50

`
G~m1l!

m!G~l!

@2k^n0&~u21!#m

@12k^n0&~u21!#m1l
Ea~2mgta!.

~B4!

The multiplicity distribution and the factorial moment a
given from Eqs.~B2! and ~B4!, respectively, as

P~n,t !5 (
m50

`

(
l 50

min(m,n)
~21! lG~m1n1l2 l !

G~l!~m2 l !! ~n2 l !! l !

3
~k^n0&!m1n2 l

~11k^n0&!m1n1l2 l
Ea~2mgta!, ~B5!

f j5~k^n0&! j
G~l1 j !

G~l! (
m50

j

~21!m
jCmEa~2mgta!.

~B6!

The j th rank normalized factorial moment is given by

F j5
f j

^n& j
5

G~l1 j !

G~l!l j

(
m50

j

~21!m
jCmEa~2mgta!

@12Ea~2gta!# j
.

~B7!

The kth rank cumulant moment is defined by the followin
equation:

k j5
] j ln P~u!

]uj U
u51

. ~B8!

From Eqs. ~B6!, ~B7!, and ~B8!, we obtain a recurrence
equation for theH j moment,

H151, H j512 (
m51

j 21

j 21Cm21

F j 2mFm

F j
Hm , ~B9!

where
3-7



or
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H j5k j / f j .

If a51, Eq. ~B4! reduces to the generating function f
the NBD with mean multiplicitŷ nb&5kl^n0&(12e2gt),

PNB~u!5F12
^nb&

l
~u21!G2l

. ~B10!

From Eq.~B10!, the NBD is given as
.

01612
P~n,t !5
G~l1n!

G~l!G~n11!

~^nb&/l!n

~11^nb&/l!n1l
. ~B11!

The normalized factorial moment and theH j moment for the
NBD are given, respectively, as

FNB, j5
G~l1 j !

G~l!l j
, HNB, j5

G~l11!~ j 21!!

G~l1 j !
. ~B12!
et-

er,
.
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